Step of Proof: l_before_transitivity
11,40
postcript
pdf
Inference at
*
1
2
I
of proof for Lemma
l
before
transitivity
:
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5.
z
:
T
6. no_repeats(
T
;
l
)
7. [
x
;
y
]
l
8. [
y
;
z
]
l
[
x
;
y
;
z
]
l
latex
by ((((((InstLemma `append_overlapping_sublists` [
T
;[
x
];[
z
];
l
;
y
])
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
)
C(
CollapseTHEN (All Reduce))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
Y
,
t
T
,
as
@
bs
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
append
overlapping
sublists
origin